Search results for "Lagrangian numerical method"
showing 2 items of 2 documents
A shallow water SPH model with PML boundaries
2015
Abstract We focus on the study and implementation of Smoothed Particle Hydrodynamics (SPH) numerical code to deal with non-reflecting boundary conditions, starting from the Perfect Matched Layer (PML) approach. Basically, the method exploits the concept of a physical damping which acts on a fictitious layer added to the edges of computational domain. In this paper, we develop the study of time dependent shallow waves propagating on a finite 2D-XY plane domain and their behavior in the presence of circular and, more generic, rectangular boundary absorbing layers. In particular, an analysis of variation of the layer׳s thickness versus the absorbing efficiency is conducted. In our model, the m…
Simple absorbing layer conditions for shallow wave simulations with Smoothed Particle Hydrodynamics
2013
Abstract We study and implement a simple method, based on the Perfectly Matched Layer approach, to treat non reflecting boundary conditions with the Smoothed Particles Hydrodynamics numerical algorithm. The method is based on the concept of physical damping operating on a fictitious layer added to the computational domain. The method works for both 1D and 2D cases, but here we illustrate it in the case of 1D and 2D time dependent shallow waves propagating in a finite domain.